(3x^2+2)=81

Simple and best practice solution for (3x^2+2)=81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2+2)=81 equation:


Simplifying
(3x2 + 2) = 81

Reorder the terms:
(2 + 3x2) = 81

Remove parenthesis around (2 + 3x2)
2 + 3x2 = 81

Solving
2 + 3x2 = 81

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '-2' to each side of the equation.
2 + -2 + 3x2 = 81 + -2

Combine like terms: 2 + -2 = 0
0 + 3x2 = 81 + -2
3x2 = 81 + -2

Combine like terms: 81 + -2 = 79
3x2 = 79

Divide each side by '3'.
x2 = 26.33333333

Simplifying
x2 = 26.33333333

Take the square root of each side:
x = {-5.131601439, 5.131601439}

See similar equations:

| 8p+3q=50 | | 3(2x+4)=4x+16 | | 3(2x+4)=4x+16 | | 10/9=5v | | w^2-3w=14+2w | | 30=x/45=12 | | Inx=5700 | | (y-36)=93 | | y=x^4-5x^3+4x | | W^2-5w=14+2w | | (x+45)=87 | | x^2-14=3 | | 3x=6/5 | | 24=m^2-5m | | -4x(x-2)=-16+10 | | x+x(0.13)=4520 | | 10(m-12)+12m=-12(10-3m) | | Ln(x)=5700 | | Log[7](x)=log[7](x) | | 3x-40x= | | 4(2a-5)+3a= | | 3x-40x= | | -6(x-5)+6x=-6(x+11) | | Log[7](x-1)=log[7](x) | | 4(2a-5)+3a= | | Log[7](x-1)=log[7](x+1) | | -6(x-5)+6x=-6(x+11) | | Log[7](x-1)=log[7](x+1) | | -6(x-5)+6x=-6(x+11) | | 1.4=2(x)+1(1-x) | | -3=-x/3 | | 2/3x-9=1/2x |

Equations solver categories